
Algebraic Number Theory

Dr. Anuj Jakhar
Lectures 5-8

Indian Institute of Technology Bhilai

anujjakhar@iitbhilai .ac.in

August 11, 2021



Integral Basis and Discriminant

Discriminant whose notion is due to Dedekind, is a basic invariant
associated with an algebraic number field.
Its computation is one of the most important problems in algebraic
number theory.
For an algebraic number field K = Q(θ) with θ in the ring OK of
algebraic integers of K having f (X ) as its minimal polynomial over
the field Q of rational numbers, the discriminant dK of K and the
discriminant1 of the polynomial f (X ) are related by the formula

discr(f ) = [OK : Z[θ]]2dK .

So computation of dK is closely connected with that of the index of
the group Z[θ] in OK .

1The discriminant of a monic polynomial of degree n having roots θ1, . . . , θn is
defined to be the product

∏
1≤i<j≤n

(
θi − θj

)2.
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It will be shown that OK is a free abelian group of rank equal to the
degree of the extension K/Q.
A Z-basis of the group OK is called an integral basis of K .
In this course, we shall describe explicit integral basis for quadratic,
pure cubic2 and cyclotomic extensions of Q.

2By a pure cubic extension of Q, we mean an algebraic number field Q(θ) where θ is
a root of an irreducible polynomial X 3 − a over Z.
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Definition. For an algebraic number field K , the degree of the extension
K/Q is called the degree of K and will be denoted by [K : Q].

An algebraic number field of degree 2 is called a quadratic field and
one of degree 3 is called a cubic field.
Algebraic number fields of degrees 4, 5 and 6 are respectively referred
to as quartic, quintic and sextic fields.
A quadratic field K is called real or imaginary according as K ⊆ R or
not.
A subfield Q(ζ) of C, where ζ is a primitive nth root of unity is called
the n-th cyclotomic field.
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Notation. Let K be an algebraic number field of degree n and
σ1, σ2, . . . , σn be all the distinct Q-isomorphisms (to be called
isomorphisms) of K into C. For an element α belonging to K , we shall
denote σi(α) by α(i). Note that if K = Q(α), then α(1), . . . , α(n) are
distinct.

Definition. Let K be an algebraic number field of degree n and let
{w1, . . . ,wn} be a basis of K/Q as a vector space. The square of the
determinant of n × n matrix

(
w (j)

i
)

i ,j is called discriminant of the basis
{w1, . . . ,wn} and will be denoted by DK/Q(w1, . . . ,wn).
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The following lemma gives another expression for the discriminant of a
basis.

Lemma 1. If {w1, . . . ,wn} is a basis of an algebraic number field K as a
vector space over Q, then

DK/Q(w1, . . . ,wn) = det
(
TrK/Q(wiwj)

)
i ,j .

Proof.
Let P denote the n × n matrix

(
w (j)

i
)

i ,j and Pt denote its transpose.

By Theorem 16, we know that, TrK/Q(α) = α(1) + · · ·+ α(n) for α
belonging to K .
Keeping this in mind, one can check that PPt =

(
TrK/Q(wiwj)

)
i ,j .

On taking determinant, the lemma is proved.

Remark. If {w1, . . . ,wn} is as in the above lemma and if all wi ’s belong to
OK , then DK/Q(w1, . . . ,wn) is in Z, because TrK/Q(α) ∈ Z for α
belonging to OK in view of Corollary 18.
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The next lemma relates the discriminant of two bases.

Lemma 2. Let K be an algebraic number field of degree n. If
{w1,w2, . . . ,wn} and {α1, α2, . . . , αn} are two bases of K/Q and C is the
transition matrix from {w1,w2, . . . ,wn} to {α1, α2, . . . , αn}, then

DK/Q(α1, α2, . . . , αn) = (det C)2DK/Q(w1,w2, . . . ,wn).

Proof. Write C = (cij)n×n, then αi =
n∑

j=1
cijwj ; consequently

α
(r)
i =

n∑
j=1

cijw (r)
j , 1 ≤ i ≤ n, 1 ≤ r ≤ n. (1)

Denote the n × n matrices
(
w (j)

i
)

i ,j and
(
α

(j)
i
)

i ,j by P and Q respectively.
We can rewrite the n2 equations given by (1) in the matrix form as
Q = CP. Taking determinant on both sides and then squaring, we obtain
the desired equality.
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We now see two important lemmas.

Lemma 3. Let f (X ) ∈ Q[X ] be a monic irreducible polynomial of degree n
having a root θ in C. If K = Q(θ), then DK/Q(1, θ, . . . , θn−1) = discr(f ).

Lemma 4. For an algebraic number field K , DK/Q(w1,w2, . . . ,wn) is
non-zero for any basis {w1,w2, . . . ,wn} of K/Q.

Note that if β1, β2, . . . , βn are elements of an algebraic number field K of
degree n which are linearly dependent over Q, then the determinant of the
matrix

(
β

(j)
i
)

i ,j is zero, because if βk is a Q-linear combination of
β1, . . . , βk−1, then the kth row of the matrix

(
β

(j)
i
)

i ,j is a linear
combination of its first k − 1 rows.
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Proof of Lemma 3. Let σ1, . . . , σn be all the distinct isomorphisms of K
into C. Then θ(i) := σi(θ) is a root of f (X ) for 1 ≤ i ≤ n.

Since these roots are distinct, f (X ) =
n∏

i=1

(
X − θ(i)).

By definition of discriminant of a basis,

DK/Q(1, θ, . . . , θn−1) =

∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1
θ(1) θ(2) . . . θ(n)

...
... . . . ...(

θ(1))n−1 (
θ(2))n−1

. . .
(
θ(n))n−1

∣∣∣∣∣∣∣∣∣∣

2

.

Keeping in mind the determinant of the Vandermonde matrix, we see
that the right hand side of the above equation equals∏
1≤i<j≤n

(
θ(i) − θ(j))2, which is the discriminant of f (X ).
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Proof of Lemma 4. Write K = Q(θ). Then θ(1), . . . , θ(n) are distinct.
Let C denote the transition matrix from a basis {w1,w2, . . . ,wn} of
K/Q to {1, θ, . . . , θn−1}.
By Lemma 2, we have

DK/Q(1, θ, . . . , θn−1) = (det C)2DK/Q(w1,w2, . . . ,wn).

The desired result follows from above equation and Lemma 3, because

DK/Q(1, θ, . . . , θn−1) =
∏

1≤i<j≤n

(
θ(i) − θ(j))2,

which is different from zero.
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The following lemma is very useful for computing DK/Q(1, θ, . . . , θn−1).

Lemma 5. Let K = Q(θ) be an algebraic number field of degree n and
f (X ) be the minimal polynomial of θ over Q. Then
DK/Q(1, θ, . . . , θn−1) = (−1)

n(n−1)
2 NK/Q(f ′(θ)).

Proof of Lemma 5. Let σ1, . . . , σn be all the distinct isomorphisms of K
into C. Then θ(i) := σi(θ) is a root of f (X ) for 1 ≤ i ≤ n.

Since these roots are distinct, f (X ) =
n∏

i=1

(
X − θ(i)). By Corollary 16,

NK/Q(f ′(θ)) =
n∏

i=1
σi(f ′(θ)) =

n∏
i=1

f ′(θ(i)). (2)

In the equation f ′(X ) =
n∑

j=1

f (X )
(X − θ(j))

, substituting X = θ(i), we see

that
f ′(θ(i)) =

n∏
k=1,k 6=i

(θ(i) − θ(k)).
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Therefore it follows from (2) that

NK/Q(f ′(θ)) =
n∏

i=1

n∏
k=1,k 6=i

(θ(i) − θ(k)). (3)

By Lemma 3, we have

DK/Q(1, θ, . . . , θn−1) =
∏

1≤i<j≤n

(
θ(i) − θ(j))2.

On comparing the above equation with (3), we obtain the desired
result.
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Integral basis

Let K be an algebraic number field. A set {w1,w2, . . . ,wn} of algebraic
integers in K is said to be an integral basis of K if every algebraic integer
in K can be uniquely written as a1w1 + a2w2 + · · ·+ anwn with ai ’s in Z.

The following theorem proves the existence of an integral basis.
Theorem 6. Let K be an algebraic number field of degree n. Then the
following hold:
(i) K has an integral basis.
(ii) Any integral basis of K has n elements.

Definition. A square matrix with entries from Z is called unimodular if its
determinant is ±1. Equivalently a square matrix with entries in Z is called
unimodular if its inverse has entries in Z.
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Proof of Theorem 6. Consider the set

S =
{
|DK/Q(β1, β2, . . . , βn)|

∣∣ {β1, β2, . . . , βn} ⊆ OK runs over bases of K/Q
}
.

Observe that S is non-empty. By virtue of Lemma 4 and Remark
after Lemma 1, S is a subset of the set of natural numbers.
Therefore S has a smallest element, say l . So there exists a basis
{w1,w2, . . . ,wn} of K/Q consisting of algebraic integers such that∣∣DK/Q(w1,w2, . . . ,wn)

∣∣ = l , i.e.,

DK/Q(w1,w2, . . . ,wn) = ±l .

Claim is that {w1,w2, . . . ,wn} is an integral basis of K .
To prove the claim, it is enough to show that each α belonging to OK
can be written as a1w1 + a2w2 + · · ·+ anwn, with ai ’s in Z, because
uniqueness is already there. Suppose to the contrary, there exists

α ∈ OK such that α =
n∑

i=1
biwi , where bi ’s belong to Q and at least

one bi /∈ Z.
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Assume without loss of generality that b1 /∈ Z.
We can write b1 = bb1c+ q, where bb1c is the largest integer not
exceeding b1 and 0 < q < 1, q ∈ Q.
Consider the element β1 of OK given by

β1 = α− bb1cw1 = qw1 + b2w2 + · · ·+ bnwn.

Note that {β1,w2, . . . ,wn} is a basis of K/Q and consists of elements
of OK .

If C denotes the transition matrix from {w1,w2, . . . ,wn} to
{β1,w2, . . . ,wn}, then by virtue of Lemma 2, we have

DK/Q(β1,w2, . . . ,wn) =
(

det C
)2DK/Q(w1,w2, . . . ,wn) = ±q2l

and hence
∣∣DK/Q(β1,w2, . . . ,wn)

∣∣ = q2l < l . This contradicts the
definition of l and hence the claim is proved.
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Assertion (ii) will be proved once we show that whenever B is an
integral basis of K , then B is also a basis of the vector space K/Q.
It is enough to show that B generates K as a vector space over Q.
Let β be any element of K . Then by Theorem 5, there exists a
non-zero integer r such that rβ ∈ OK .
So rβ can be written as a finite linear combination of elements of B
with coefficients in Z and hence the result follows.
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Definition. A square matrix with entries from Z is called unimodular if its
determinant is ±1. Equivalently a square matrix with entries in Z is called
unimodular if its inverse has entries in Z.
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Definition (discriminant of K ).
Let K be an algebraic number field of degree n.
Let {w1, . . . ,wn} and {α1, . . . , αn} be two integral bases of K .
Then there exist n×n matrices A and B with entries from Z such that α1

...
αn

 = A

 w1
...

wn

 and

 w1
...

wn

 = B

 α1
...
αn

 ,
which implies that AB = I and hence det A = ±1.
So by virtue of Lemma 2, DK/Q(α1, . . . , αn)
=
(

det A
)2DK/Q(w1, . . . ,wn) = DK/Q(w1, . . . ,wn).

Therefore any two integral bases of K have the same discriminant.
This common value of the discriminant is called the discriminant of
the field K .
We shall denote it by dK .
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The following basic lemma gives a criterion for a basis of K/Q to be an
integral basis of K .

Lemma 7. Let K be an algebraic number field of degree n and
β1, β2, . . . , βn be algebraic integers in K which are linearly independent
over Q. Then the quotient DK/Q(β1, β2, . . . , βn)/dK is the square of an
integer. In particular, if DK/Q(β1, β2, . . . , βn) = dK , then β1, β2, . . . , βn
form an integral basis of K .

Proof of Lemma 7. Let {w1,w2, . . . ,wn} be an integral basis of K and C
be the transition matrix from {w1,w2, . . . ,wn} to {β1, β2, . . . , βn}. Then
C has entries in Z.

In view of Lemma 2, DK/Q(β1, β2, . . . , βn) =
(

det C
)2dK .

So DK/Q(β1, β2, . . . , βn)/dK is the square of an integer.
If DK/Q(β1, β2, . . . , βn) = dK , then C is a unimodular matrix and
hence β1, β2, . . . , βn form an integral basis of K .
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First we determine explicitly the discriminant and an integral basis of a
quadratic field. It can be easily seen that every quadratic field can be
uniquely written as Q(

√
d), where d is a squarefree integer.

Theorem 8. For a quadratic field K = Q(
√

d) with d a squarefree integer,
the following hold:
(i) If d ≡ 2 or 3 mod 4, then

{
1,
√

d
}
is an integral basis of K and

dK = 4d .
(ii) If d ≡ 1 mod 4, then {1, (1 +

√
d)/2} is an integral basis of K and

dK = d .
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Properties of Discriminant

Recall that if A = (aij)i ,j is an n × n matrix, then

det A =
∑

(j1,j2,...,jn)
a1j1a2j2 · · · anjn −

∑
(k1,k2,...,kn)

a1k1a2k2 · · · ankn ,

where (j1, j2, . . . , jn) runs over all even permutations of {1, 2, . . . , n} and
(k1, k2, . . . , kn) runs over all odd permutations of {1, 2, . . . , n}.

The next theorem by Ludwig Stickelberger was first announced in the
International Congress of Mathematicians held in Zurich in 1897. The
present proof of this theorem was given by Schur in 1929.

Stickelberger’s Theorem. For any algebraic number field K , its
discriminant dK is congruent to 0 or 1 modulo 4.
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Definition. An isomorphism σ of an algebraic number field K into C will
be called real if σ(K ) ⊆ R, otherwise it will be called non-real. Note that
non-real isomorphisms of K occur in conjugate pairs.

The following theorem which determines the sign of the discriminant of an
algebraic number field was first proved by Alexander von Brill in the year
1877.

Brill’s Theorem. Let K be an algebraic number field of degree
n = r1 + 2r2, where r1 is the number of real isomorphisms of K and 2r2 is
the number of non-real isomorphisms of K , then (−1)r2dK > 0.
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The next two lemmas besides being of independent interest will be used
for finding the discriminant of algebraic number fields.

Lemma 9. Let M be a free abelian group with basis {w1, . . . ,wm} having
rank m ≥ 1. Let N be a non-zero subgroup of M. Prove that after a
suitable reordering of w1, . . . ,wm, there exists a basis {η1, . . . , ηk} of N of
the form

η1 = c11w1 + c12w2 + · · · + c1mwm
η2 = c22w2 + · · · + c2mwm
... . . . ...
ηk = ckkwk + · · ·+ ckmwm

with cij ∈ Z, cii > 0 for 1 ≤ i ≤ k ≤ m.

Remark. If M and N are as in the above lemma and have the same rank,
then without reordering w1,w2, . . . ,wm, one can construct a basis of N of
the type η1, η2, . . . , ηm.
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Lemma 10. If M is a free abelian group of finite rank and N is a subgroup
of M such that rank(N) = rank(M), then the index [M : N] is finite and
equals the absolute value of the determinant of the transition matrix from
any basis of M to any basis of N.

For an algebraic number field K , the following theorem gives the index of
a subgroup of OK generated by a basis B of K/Q consisting of algebraic
integers in terms of discriminant of B and dK . This result is a refined
version of Lemma 7.

Theorem 11. Let {β1, β2, . . . , βn} be a basis of an algebraic number field
K as a vector space over Q consisting of algebraic integers. Let N denote
the free abelian group generated by β1, β2, . . . , βn. Then

[OK : N]2 = DK/Q(β1, β2, . . . , βn)/dK .
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The following corollary is an immediate consequence of the last theorem.

Corollary 12. Let K = Q(θ) be an algebraic number field of degree n with
θ an algebraic integer. Then the index of the subgroup Z[θ] in OK is given
by

[OK : Z[θ]]2 = DK/Q(1, θ, . . . , θn−1)/dK .

In the setup of the above corollary and by Lemma 3,
DK/Q(1, θ, . . . , θn−1) = discr(f ), where f (X ) is the minimal polynomial of
θ over Q. So the above equation may be rewritten as

discr(f ) = [OK : Z[θ]]2dK .
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Notation. Let K = Q(θ) be as in the above corollary. The index of the
subgroup Z[θ] in OK is called the index of θ and will be denoted by ind θ.

Definition. An algebraic number field K of degree n is said to be
monogenic if there exists an element θ ∈ OK such that {1, θ, . . . , θn−1} is
an integral basis of K ; an integral basis of the type {1, θ, . . . , θn−1} is
called a power basis of K .

In view of Theorem 8, every quadratic field is monogenic. It will be shown
that a cubic field of the type Q( 3

√
m) is also monogenic when m is a

squarefree integer which is not congruent to ±1 modulo 9. Also we will
prove that every cyclotomic field is monogenic. In 1878, Dedekind showed
that not every algebraic number field is monogenic by proving that the
cubic field K = Q(θ) with θ3 − θ2 − 2θ − 8 = 0, is not monogenic.
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The next result is sometimes useful for computing the discriminant and
integral basis.

Theorem 13. Let K = Q(θ) be an algebraic number field with θ an
algebraic integer. If the minimal polynomial of θ over Q is an Eisenstein
polynomial3 with respect to a prime p, then p does not divide ind θ.

3A polynomial anxn + an−1xn−1 + · · ·+ a0 with coefficients from Z is said to be an
Eisenstein polynomial with respect to a prime p if p - an, p|ai for 0 ≤ i ≤ n − 1 and
p2 - a0. Such a polynomial is irreducible over Q.
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Examples

1. Compute the discriminant and an integral basis of the field K = Q(θ)
where θ is a root of the polynomial f (X ) = X 3 − X + 1.

Observe that f (X ) is irreducible over Q, because if f (X ) is reducible
over Q, then f (X ) has a rational root, say α1. Since each root of
f (X ) is an algebraic integer, α1 ∈ Z. If α2, α3 are other roots of
f (X ), then α2α3 = −1

α1
∈ Q and hence α2α3 ∈ Z. Therefore

α1 = ±1. But by direct verification, neither 1 nor −1 is a root of
f (X ). This contradiction proves that f (X ) is irreducible over Q.
Applying Lemma 5, it can be easily seen that
DK/Q(1, θ, θ2) = (−1)

3(3−1)
2 NK/Q(f ′(θ)) = −NK/Q(3θ2 − 1) = −23.

Therefore by Lemma 7, {1, θ, θ2} is an integral basis of K and
dK = −23.

Note: the field K in the above example is the cubic field whose
discriminant has smallest absolute value among all cubic fields.
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2. Compute the discriminant and an integral basis of the field K = Q(θ)
where θ is a root of the polynomial f (X ) = X 3 − 2X 2 + 2.

Let K = Q(θ) where θ is a root of the polynomial
f (X ) = X 3 − 2X 2 + 2 which is an Eisenstein polynomial with respect
to the prime 2 and hence is irreducible over Q.
By Corollary 12 and Lemma 5, we have

dK (ind θ)2 = DK/Q(1, θ, θ2) = −NK/Q(3θ2 − 4θ) = −44,

which shows that ind θ divides 2.
In view of Theorem 13, ind θ is coprime to 2. We conclude that ind θ
equals 1, dK = −44 and {1, θ, θ2} is an integral basis of K .
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3. Compute the discriminant and an integral basis of the field K = Q(θ)
where θ is a root of the polynomial f (X ) = X 3 − 9X − 6.

Note that f (X ) is an Eisenstein polynomial w.r.t. the prime 3 and
hence is irreducible over Q.
By Corollary 12 and Lemma 5, we see that

dK (ind θ)2 = DK/Q(1, θ, θ2) = −NK/Q(3θ2 − 9) = 23 · 35.

It follows from the above equation and from Theorem 13 that ind θ is
1 or 2.
If ind θ is 2, then dK = 2 · 35 which is impossible because dK ≡ 0 or
1 (mod 4) by Stickelberger’s theorem.
So ind θ is 1 and dK = 23 · 35.
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Integral Basis and Discriminant of Q( 3
√

m)

Theorem 14. Let K = Q(θ) be a cubic field with θ3 = m = ab2, where
a, b are relatively prime squarefree integers. The following hold:
(i) If m 6≡ 1 or 8 (mod 9), then {1, θ, θ2/b} is an integral basis of K and

dK = −27a2b2.

(ii) If m ≡ 1 (mod 9), then {θ, θ2/b, (1 + θ + θ2)/3} is an integral basis
of K and dK = −3a2b2.

(iii) If m ≡ 8 (mod 9), then {θ, θ2/b, (1− θ + θ2)/3} is an integral basis
of K and dK = −3a2b2.

The following lemma is crucial step in the proof of the above theorem.

Lemma 15. Let K = Q(θ) be a cubic field with θ3 = m = ab2, where a, b
are relatively prime squarefree integers. Then dK = −27a2b2 if 3 divides
ab and dK = −3r a2b2 with r = 1 or 3 when 3 - ab.
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Integral Basis and Discriminant of Cyclotomic Fields
We first find the discriminant and an integral basis of cyclotomic fields
generated by pth root of unity for a prime p. Recall that if ζ is a primitive
nth root of unity, then the degree of the nth cyclotomic field Q(ζ) over Q
is φ(n)

Theorem 16. Let ζ be a primitive pth root of unity, p an odd prime. Then
{1, ζ, . . . , ζp−2} is an integral basis of K = Q(ζ) and dK = (−1)

p−1
2 pp−2.

The argument used in the proof of the above theorem has been extended
to prove the following more general theorem.

Theorem 17. Let ζ be a primitive (pr )th root of unity, p any prime (odd or
even), pr ≥ 3. Then {1, ζ, . . . , ζφ(pr )−1} is an integral basis of K = Q(ζ)
and dK = (−1)

φ(pr )
2 prφ(pr )−pr−1

.
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The following two propositions, which are of indepedent interest, will be
used to compute the discriminant of a general cyclotomic field.

Notation. If S and T are subrings of a ring R, then ST will stands for the
composite ring, i.e., the smallest subring of R containing S ∪ T . Similar
notation will be used for the composite of two subfields of a field.

Proposition 18. Let K and L be algebraic number fields of degree m and n
respectively. Let d = (dK , dL). If [KL : Q] = mn, then OKL ⊆

1
d (OKOL).

In particular when d = 1, then OKOL = OKL.

Proposition 19. Let K and L be algebraic number fields of degree m and n
respectively such that [KL : Q] = mn. If {α1, α2, . . . , αm} and
{β1, β2, . . . , βn} are bases of K/Q and L/Q respectively, then the
discriminant of the basis {αiβj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} of KL/Q is given
by

DKL/Q
(
α1β1, . . . , αmβn

)
=
(
DK/Q

(
α1, . . . , αm

))n(
DL/Q

(
β1, . . . , βn

))m
.
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We quickly deduce the following corollary from the above two propositions.

Corollary 20. Let Q(
√

u),Q(
√

v) be two distinct quadratic fields having
discriminants u, v respectively which are coprime. Then the discriminant
of the composite field Q(

√
u,
√

v) is u2v2.

We now state the discriminant and an integral basis of Q(ζm) for general
m, where ζm stands for a primitive mth root of unity.

Theorem 21. Let m be any integer ≥ 3 such that m 6≡ 2 (mod 4). Let ζ a
primitive mth root of unity. Then {1, ζ, . . . , ζφ(m)−1} is an integral basis
of K = Q(ζ) and

dK = (−1)
φ(m)

2 mφ(m)∏
p|m

pφ(m)/(p−1) ,

where p runs over all primes dividing m.

Corollary 22. Let ζ be a primitive mth root of unity, m ≥ 3. Then the ring
of algebraic integers of Q(ζ + ζ−1) is Z[ζ + ζ−1].
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Exercises

Find the discriminant and an integral basis of the field K = Q(θ),
where θ3 + θ + 1 = 0.
Find the discriminant and an integral basis of the field K = Q(θ),
where θ3 − θ + 1 = 0.
If the minimal polynomial of a complex number α over Q is
Xn + aX + b, show that for K = Q(α),
DK/Q(1, α, . . . , αn−1) = (−1)

n(n−1)
2
(
nnbn−1 + an(1− n)n−1).

Find the discriminant and integral basis of Q( 3√5),Q( 3√6).
Find an integral basis of each of the three cubic fields.
(a) K1 = Q(θ), θ3 − 18θ − 6 = 0.
(b) K2 = Q(θ), θ3 − 36θ − 78 = 0.
(c) K3 = Q(θ), θ3 − 54θ − 150 = 0.
Verify all the three fields have the same discriminant.
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Exercises Contd..

Find an integral basis and the discriminant of Q(θ), where
θ5 − 25θ − 5 = 0.
Find the discriminant and integral basis of Q( 3√75),Q( 3√99) and
Q( 3√100).
Find the discriminant and integral basis of Q( 3√10),Q( 3√28).
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